
Meta Learning
MIT

Iddo Drori, Fall 2020

Supervised Learning

• Data
• Learning algorithm for finding predictor
• For test input, predictor estimates test output

• Inference of predictor parameters given data
p(parameters | data)

data

predictor

learning
algorithm

test
input

test
output

Supervised Learning

• Data
• Learning algorithm for finding predictor
• For test input, predictor estimates test output

• Inference of 𝜙 given D: p(𝜙 | D)
𝜙* = argmax𝜙 log p(𝜙 | D)
= argmax𝜙 log p(D | 𝜙) + log p(𝜙)
= argmax𝜙 ∑i log p(yi | Xi, 𝜙) + log p(𝜙)

D
(X,y)

predictor

learning
algorithm

test
input

test
output

Meta Learning

• Learn meta parameter 𝜽 given meta training data D

p(𝜽 | D)
𝜽* = argmax𝜽 log p(𝜽 | D)

Meta Learning for Few Shot Classification

• Adaptation

p(𝜙 | Dt, 𝜽*)
𝜙* = argmax𝜙 log p(𝜙 | Dt, 𝜽*)

Meta Learning for Few Shot Classification

Meta Learning for Few Shot Classification

• Training task 1: cats vs. dogs

1 2 3

cat

dog

?

Meta Learning for Few Shot Classification

• Training task 1: 2 way (classes), 3 shot (samples)

sample 1 sample 2 sample 3

class 1

class 2

?

Meta Learning for Few Shot Classification

• Training task 1: c = 2 classes, k = 3 samples

sample 1 sample 2 sample 3

class 1

class 2

?

Meta Learning for Few Shot Classification

• Training task 2: flower vs. bird

1 2 3

flower

bird

?

Meta Learning for Few Shot Classification

• Testing task: lion vs. monkey

1 2 3

lion

monkey

?

Meta Learning for Few Shot Classification

meta
training

meta
testing

prior
task 1 n = 100 tasks

Meta Learning for Few Shot Classification

• c classes
• k samples per class for training
• n tasks for meta training

Task Support and Query Sets

• For each task i with meta training dataset Di = Dsi U Dqi

– Training set Dsi (support set)
– Testing set Dqi (query set)

task i

Meta Data

D1

Ds1 U Dq1

D2

Ds2 U Dq2

Dn

Dsn U Dqn

D = (D1,...,Dn)

Meta Learning

xtest

D1

Ds1 U Dq1

D2

Ds2 U Dq2

Dn

Dsn U Dqn

Dt

ytest

Meta Learning

task
data

task
data

task
data

new
task
data

predictor

meta
learning
algorithm

learning
algorithm

task = data splits, priors

test
data prediction

Black-Box Methods

Black-Box Meta Learning for Few Shot Classification

• Meta training data: D = (D1,...,Dn)

• Inference over task specific parameters 𝜙i given meta
training dataset and meta parameters

p(𝜙i | Dsi, 𝜽)
max𝜽 ∑i log(𝜙i | Dqi)

Black-Box Meta Learning for Few Shot Classification

D1

D2

Dn

Dt

g𝜙i

learning
algorithm

task = data splits, priors

xtest ytest

𝑓𝜽 𝜙i

Meta Learning for Few Shot Classification

• p(𝜙i | Dsi, 𝜽)
• Optimize 𝜽 MLE using meta training dataset D
• Model as p(𝜙i | Dsi, 𝜽) as NN 𝑓𝜽
• Meta NN 𝑓𝜽 with input Di and output 𝜙i

𝜙i = 𝑓𝜽(Dsi)
• Second task specific NN g with parameters 𝜙i computing

ytest = g𝜙i(xtest)
• max𝜽 ∑i (X,y)~Dqi log g𝜙i(y|x)
• max𝜽 ∑i ℒ (𝑓𝜽(Dsi), Dqi)

Meta Learning Algorithm for Few Shot Classification

• Sample task i
• Sample task i dataset Di = Dsi U Dqi:

– Training set Dsi (support set)
– Testing set Dqi (query set)

• Compute 𝜙i = 𝑓𝜽(Dsi)
• Update 𝜽 by ∇𝜽 ℒ(𝜙i, Dqi)

Gradient-based Methods

Gradient-based Inference

• Meta model parameters 𝜽 is a prior, model initialization
• For each task i: task adapted parameter 𝜙i

max𝜽 log p(Dsi |𝜙i) + log p(𝜙i | 𝜽)

Gradient-based Inference

• Meta model parameters 𝜽 is a prior, model initialization
• For each task i: task adapted parameter 𝜙i

• Fine tuning
• Initialization with pre-trained parameters 𝜽

– CNN parameters trained on image dataset
– Transformer parameters trained on text corpus

• Training data for new task Dt
𝜙i = 𝜽 - 𝜶∇𝜽 ℒ(𝜽, Dt)

Gradient-based Bi-Level Optimization

• Meta model parameters 𝜽 is a prior, model initialization
• Optimize 𝜽 across many tasks so fine tuning does well
• For each task i: task adapted parameter 𝜙i

min𝜽 1/n ∑i ℒi(𝜙i, Dqi)
𝜙i = algorithm(𝜽, Dsi)

min𝜽 1/n ∑i ℒi(algorithm(𝜽, Dsi), Dqi)

Model Agnostic Meta Learning (MAML)

• Meta training
min𝜽 1/n ∑i ℒi(𝜙i, Dqi)
𝜙i = 𝜽 - 𝜶∇𝜽 ℒ(𝜽, Dsi)

min𝜽 1/n ∑i ℒi(𝜽 - 𝜶∇𝜽 ℒ(𝜽, Dsi), Dqi)
• Meta testing
• Ds: training data of new task
• 𝜽*: pre-trained parameters

𝜙 = 𝜽* - 𝜶∇𝜽 ℒ(𝜽, Ds)

Meta Algorithm

• Sample task i
• Sample task i dataset Di = Dsi U Dqi:

– Training set Dsi (support set)
– Testing set Dqi (query set)

• Optimize 𝜙i = 𝜽 - 𝜶∇𝜽 ℒ(𝜽, Dsi)
• Update 𝜽 by ∇𝜽 ℒ(𝜙i, Dqi) = ∇𝜽 ℒ(𝜽 - 𝜶∇𝜽 ℒ(𝜽, Dsi), Dqi)

Gradient-based Meta Learning

• Meta training
min𝜽 1/n ∑i ℒi(𝜙i, Dqi)

• Update algorithm
𝜙i = algorithm(𝜽, Dsi)

• Meta testing
• Ds: training data of new task
• 𝜽*: pre-trained parameters

𝜙 = 𝜽* - 𝜶∇𝜽 ℒ(𝜽, Ds)

Gradient-based Meta Learning

• Meta training
min𝜽 1/n ∑i ℒi(𝜙i, Dqi)
𝜙i = algorithm(𝜽, Dsi)

• MAML = 𝜽 - 𝜶∇𝜽 ℒ(𝜽, Ds)
• MetaSGD = 𝜽 - 𝜶diag(w)∇𝜽 ℒ(𝜽, Ds)
• Tnet = 𝜽 - 𝜶∇𝜽 ℒ(𝜽, w, Ds)
• Meta curvature = 𝜽 - 𝜶B(𝜽,w)∇𝜽 ℒ(𝜽, Ds)
• Wrap-grad = 𝜽 - 𝜶∇𝜽 ℒ(𝜽, w, Ds)

Gradient-based Meta Learning

• Second order derivatives
min𝜽 ℒ(𝜙, Dqi)

𝜙 = algorithm(𝜽, Ds)

min𝜽 ℒ(algorithm(𝜽, Ds), Dqi)

d𝜽ℒ(𝜙, Dqi) = ∇𝜽ℒ(a, Dqi)|a=algorithm(𝜽, Ds)d𝜽algorithm(𝜽, Ds)

Gradient-based Meta Learning

• Second order derivatives
min𝜽 ℒ(𝜙, Dqi)

𝜙 = algorithm(𝜽, Ds) = 𝜽 - 𝜶 d𝜽ℒ(𝜽, Ds)

d𝜽algorithm(𝜽, Ds) = I - 𝜶 d𝜽ℒ(𝜽, Ds)

d𝜽ℒ(𝜙, Dqi) = ∇𝜽ℒ(a, Dqi)|a=u(𝜽, Ds)d𝜽algorithm(𝜽, Ds)

2

Gradient-based Meta Learning

• Second order derivatives
min𝜽 1/n ∑i ℒi(𝜙i, Dqi)

𝜙i = u(𝜽, Dsi)
∇𝜽ℒ(𝑓𝜙, Dq) = (I - 𝜶 Hs(𝜽))gq(𝜙)

• Reptile update for 𝜽: 𝜽 - 𝜷 1/n (𝜽 - 𝜙i)

Meta Learning for Few Shot Classification

• Why not take all meta training data together with meta
testing data to learn a representation from all of them
together?

• This may work better than other meta learning methods.
Rethinking Few-Shot Image Classification: A Good
Embedding Is All You Need?, Tian et al, 2020.

Metric-based Methods
(non-parametric)

Metric-based Meta Learning

• Matching network
• Prototypical network
• Relation network
• GNN
• MetaOptNet

Naive Approach

• Compare Dqi with each sample in Dsi

• Label by nearest neighbor.
• Other methods?

Siamese Networks

• Are two samples from the same class?
• Training: pairwise comparisons of xtest with all Dsi

• Binary classification
• Testing: one vs. many
• φ(xi,xj) = ||𝜙(xi) - 𝜙(xj)||

Matching Network

• Training on multi-class classification
• Nearest neighbors at test time
• Learn an embedding at train time such that nearest

neighbors at test time provides accurate predictions
• Meta training: learn g𝜽 and 𝑓𝜽

Similarity score 𝑓𝜽(xtest,xk)

ytest = ∑(xk,yk) in Ds 𝑓𝜽(xtest,xk)yk

Figure source: Matching networks for one shot learning, Vinyals et al, 2016

Non-Parametric Meta Learning Algorithm

• Sample task i
• Sample task i dataset Di = Dsi U Dqi:

– Training set Dsi (support set)
– Testing set Dqi (query set)

• Compute ytest = ∑(xk,yk) in Ds𝑓𝜽(xtest,xk)yk

• Update 𝜽 by ∇𝜽 ℒ(y’test, ytest)

Non-parametric, independent of 𝜙

Prototypical Network

• Aggregate class information, prototypical for each class
• Embed each training image in each class and take mean
• Embed test image
• Embedding of data and nearest neighbors
• ck = 1/|Dsi| ∑(x,y) in Dsi𝑓𝜽(x)
• p𝜽(y = k|x) = exp(-d(𝑓𝜽(x),ck)) / ∑k exp(-d(𝑓𝜽(x),ck))
• Euclidean or cosine distance

Figure source: Prototypical networks for few-shot learning, Snell et al, 2017

Relation Network

• Instead of defining d (Euclidean or cosine), learn d
• Relation module

Figure source: Learning to compare: Relation network for few-shot learning, Sung et al, 2018

Graph neural network (GNN)

• Embedding using GNN

Figure source: Few-shot learning with graph neural networks, Garcia and Bruna, 2018

MetaOptNet

Figure source: Meta-learning with differentiable convex optimization, Lee et al, 2019

Comparison of Approaches

• Black-box: ytest = 𝑓𝜽(Dsi, xtest)

• Gradient-based (optimization): ytest = 𝑓(Dsi, xtest)
= 𝑓𝜙i(xtest) where 𝜙i = 𝜽 - 𝜶∇𝜽 ℒ(𝜽, Dsi)

• Metric-based (non-parametric): ytest = 𝑓(Dsi, xtest) =
softmax(-d (𝑓𝜽(x), ck)), ck = 1/|Dsi| ∑(x,y) in Dsi 𝑓𝜽(x)

Comparison of Approaches

• Black-box: data intensive

• Gradient-based (optimization): classification, regression,
reinforcement learning; second order, computation
intensive

• Metric-based (non-parametric): classification; simple feed
forward; fast; dependent on distance metric

Meta Learning
MIT

Iddo Drori, Fall 2020

